Open access to novel dual flow chamber technology for in vitro cell mechanotransduction, toxicity and pharamacokinetic studies
نویسندگان
چکیده
BACKGROUND A major stumbling block for researchers developing experimental models of mechanotransduction is the control of experimental variables, in particular the transmission of the mechanical forces at the cellular level. A previous evaluation of state of the art commercial perfusion chambers showed that flow regimes, applied to impart a defined mechanical stimulus to cells, are poorly controlled and that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. METHODS This study provides a novel chamber design to provide both physiologically-based flow regimes, improvements in control of experimental variables, as well as ease of use compared to commercial chambers. This novel design achieves controlled stresses through five gasket designs and both single- and dual-flow regimes. RESULTS The imparted shear stress within the gasket geometry is well controlled. Fifty percent of the entire area of the 10 x 21 mm universal gasket (Gasket I, designed to impart constant magnitude shear stresses in the center of the chamber where outcome measures are taken), is exposed to target stresses. In the 8 mm diameter circular area at the center of the chamber (where outcome measures are made), over 92% of the area is exposed to the target stress (+/- 2.5%). In addition, other gasket geometries provide specific gradients of stress that vary with distance from the chamber inlet. Bench-top testing of the novel chamber prototype shows improvements, in the ease of use as well as in performance, compared to the other commercial chambers. The design of the chamber eliminates flow deviations due to leakage and bubbles and allows actual flow profiles to better conform with those predicted in computational models. CONCLUSION The novel flow chamber design provides predictable and well defined mechanical forces at the surface of a cell monolayer, showing improvement over previously tested commercial chambers. The predictability of the imparted stress improves both experiment repeatability as well as the accuracy of inter-study comparisons. Carefully controlling the stresses on cells is critical in effectively mimicking in vivo situations. Overall, the improved perfusion flow chamber provides the needed resolution, standardization and in vitro model analogous to in vivo conditions to make the step towards greater use in research and the opportunity to enter the diagnostic and therapeutic market.
منابع مشابه
Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
متن کاملPerformance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
متن کاملI-5: Multicellular Human Testicular Organoid: A Novel 3D In Vitro Germ Cell and Testicular Toxicity Model
Background Background: Mammalian spermatogenesis is regulated through paracrine and endocrine activity, specific cell signaling, and local control mechanisms. These highly specific signaling interactions are effectively absent upon placing testicular cells into two-dimensional primary culture. The specific changes that occur between key cell types and involved spermatogenesis signaling pathways...
متن کاملApplication of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment
Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...
متن کاملRemoval of High Concentrations of Phenol in Dual Chamber Microbial Fuel Cell
Background and purpose: Microbial fuel cell is one of the sustainable development technologies that can be used simultaneously for removal of many pollutants and generate electricity. The aim of this study was to determine the removal rate of high concentrations of phenol in a microbial fuel cell. Materials and methods: A dual chamber microbial fuel cell having Nafion proton exchange membrane ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioMedical Engineering OnLine
دوره 6 شماره
صفحات -
تاریخ انتشار 2007